

Jean B. Contina¹, Louise-Marie Dandurand¹, Guy R. Knudsen² Department of Entomology, Plant Pathology & Nematology. University of Idaho, Moscow, ID 83844-2329. ² Department of Soil & Water Systems. University of Idaho, Moscow, ID 83844-2340.

ABSTRACT

- The potato cyst nematode *Globodera pallida* is a globally regulated and quarantine pest in the state of Idaho.
- A spatial analysis was performed to understand the spatial arrangement of infested fields and to predict the potential threat of *G. pallida* for entry to new areas.
- Results showed the presence of spatially clustered fields infested with *G. pallida*.
- The spread of *G. pallida* grew in diameter from the original center of infestation toward the southwest as an ellipsoidalshaped cluster.
- Globodera pallida spread followed a contagion effect scenario, where nearby infested fields contributed to the infestation of new fields, through soil contaminated agricultural equipment.

INTRODUCTION

- Globodera pallida can survive in the soil for up to 30 years without a suitable host as a cyst containing the nematode eggs. In highly infested fields, G. pallida can reduce tuber yields up to 80%.
- Spatial analysis applied to plant-parasitic nematodes provides useful information on the spatial pattern and spatio-temporal dynamics of disease progression.
- Spatial analysis allows the characterization of infection foci and can be used as a tool for predictive modeling of *G. pallida* population dynamics in the field.
- Spatial analysis is regarded as a decision support system for policymakers and stakeholders.
- In this study, we proceeded in exploring the data by doing a cluster analysis followed by a point pattern analysis and spatial interpolation of infested fields using the attribute variables of number of cysts and the values of egg viability.

OBJECTIVES

The objectives of this study were to: (i) describe the spatial distribution pattern of fields infested with G. pallida in southern Idaho, and (ii) predict the potential risk of G. pallida spread to new areas.

Spatial Analysis Applied to Plant-parasitic Nematodes: The Case of *Globodera pallida* in Idaho

METHODS

Fig. 1. A. Conceptual framework for spatial analysis of *Globodera pallida* in Idaho. B. Locations of the fields infested with *G. pallida* in southern Idaho.

Fig. 2. A. B. Cluster analysis of *Globodera pallida* infested fields. C. Ripley's K-function plot showing evidence of spatial aggregation. D. Kernel density estimation 3D-plot of infested fields.

Contina, J.B., Dandurand, L.M., Knudsen, G.R. 2018. A spatial analysis of the potato cyst nematode *Globodera pallida* in Idaho. Phytopathology, 108: 988-1001. R Core Team. 2017. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/. Skantar, A.M., Handoo, Z.A., Carta, L.K., Chitwood, D.J. 2007. Morphological and molecular identification of Globodera pallida. J. Nematol., 39: 133-144

RESULTS

Fig. 3. A. B. Nearest neighbor approach (Thiessen polygons) for spatial interpolation of number of cysts/ha and the values of egg viability of Globodera pallida. C. Kriging prediction maps and semivariogram analysis for the number of cysts/ha and the values of egg viability.

CONCLUSIONS

- agricultural equipment.

Fields infested with G. pallida are spatially aggregated (P = 0.003) and the direction of infestations is oriented toward southwest as an ellipsoidal-shaped cluster.

Globodera pallida spread followed a contagion effect scenario, where nearby infested fields contributed to the infestation of new fields, through soil contaminated

Spatial aggregation of infested fields, with an average of 4,263 cysts/ha and egg viability of 25%, facilitates quarantine activities and confines this pest to a small area of 1,233 ha.

