Early Infection Transcriptome Analysis of Globodera pallida Infected in the Susceptible Solanum tuberosum and Resistant Solanum sisymbriifolium

> Rinu Kooliyottil¹, Louise-Marie Dandurand¹, Joseph C Kuhl¹, Allan Caplan¹, Fangming Xiao¹, Benjamin Mimee², and Joel Lafond-Lapalme²

¹Department of Plant Soil and Entomological Sciences, University of Idaho, Moscow, ID 83844; ²Agriculture and Agri-Food Canada, Horticulture Research and Development Centre, 430 boul. Gouin, St-Jean-sur-Richelieu, Quebec, Canada J3B 3E6

> **University** of Idaho College of Agricultural and Life Sciences

Globodera pallida (Pale Cyst Nematode, PCN)

- One of the most
 economically important
 pests of potato, causing
 in excess of 80% yield
 loss.
- First detected in the United States in 2006 in Idaho, and is regulated by both USDA-APHIS and the Idaho State Department of Agriculture.

Solanum sisymbriifolium

- > Non-tuber-bearing solanaceous plant.
- > Promising trap crop for the control of *G. pallida*.

Immune response in S. sisymbriifolium

Immune response in S. sisymbriifolium

Scale bar = 50 µM

<u>Objective</u>: To study the transcriptome profile of *G. pallida* infected in *S. tuberosum* and *S. sisymbriifolium* at early infection stage

- Infected nematodes were collected from S. sisymbriifolium and S. tubersoum roots at 24 hours post infestation and frozen in liquid nitrogen and stored at -80 °C.
- ~ 150 J2s were collected from S. tuberosum, whereas, the number of J2s in S. sisymbriifolium were ~ 30-50.
- ➤ RNA was isolated and the RNA seq libraries were prepared using TruSeq[®] Stranded mRNA NeoPrep[™] Kit (Illumina) and sequenced on Illumina HiSeq 4000 (100 bp, paired end) (UC Berkeley Sequencing facility).

Single root inoculation prototype

- FAST QC for quality control
- Trimmomatic for read trimming to delete all the adapters and primer sequences

Tuxedo Suite

Trapnell et al. (2012). Nature Protocols 7, 562–578

Density plot: Distribution of expression values for the transcripts * FPKM: Fragments per kilobase of exons per million fragments mapped

Heatmap of significantly differentially expressed genes

S. sisymbriifolium S. tuberosum

Heatmap of significantly differentially expressed genes

S. sisymbriifolium S. tuberosum

Rbp-4 effector

Retinol binding proteins (Rbp)

Postma *et al.* (2012) Plant Physiol 160, 944-954. Jones et al. (2009 Mol Plant Pathol. 10 (6) 815-828. Sacco *et al.* (2009) PLoS Pathogens 5 (8) e1000564.

Cuticle collagen dpy-2

Johnstone IL (2000) Trends in Genetics16(1):21-7.

Ectopic p granules protein-5 (epg-5)

Brennand et al. (2011). Molecular and Biochemical Parasitology 177 (2) 83–99.

BTB and MATH domain-containing protein 38 (bath-38)

> Mediate protein–protein interactions.

Associated with signal transduction, cell-cycle regulation.

> Play an important role in nematode immunity.

Srinivasan et al. (2013) Genetics 193(4): 1279–1295.

Metabolic pathways associated with expressed genes

Secretory proteins		Uncharacterized proteins with secretory functions		Immunity and defense	
Cellulase, putative gland protein Cathepsin S-like cysteine protease Eng-1 Ivg-9 <i>G. rostochiensis</i> 1106 effector Rbp-4		GPLIN_000044400 GPLIN_000028880 GPLIN_000925800		Clp-1 CTSS Exn-1 bath-38	

Upregulated in S. sisymbriifolium Townregulated in S. sisymbriifolium
 Upregulated in S. tuberosum
 Downregulated in S. tuberosum

Conclusion

• Globodera pallida infected in S. sisymbriifolium have 12 genes completely turned off.

• Downregulation of parasitism related genes including effector genes namely, Rbp-4 homologue and *Globodera rostochiensis* 1106 effector family ortholog in the *G. pallida* infected *S. sisymbriifolium*.

•High expression of immunity and defense genes when *G. pallida* was infected in *S. sisymbriifolium*. This attributes towards the unsuccessful effort of *G. pallida* to overcome the resistance of the plant.

Acknowledgements

- USDA-NIFA
- USDA-APHIS
- Northwest Potato research Consortium
- Idaho Potato Commission

PCN Team, University of Idaho

Thank you