GLOBAL breeding objective

Jonathan Whitworth – Plant Pathologist, USDA-ARS, Idaho Joe Kuhl – Molecular Biologist, Univ. Idaho Walter DeJong – Geneticist, Cornell Univ. Rich Novy – Geneticist, USDA-ARS, Idaho Glenn Byran – Geneticist, James Hutton Institute, UK

<u>Nematologists</u>

Louise-Marie Dandurand, Univ. Idaho Inga Zasada, USDA-ARS, Oregon Xiahong Wang, USDA-ARS, New York

GLOBAL Advisory Board Meeting

Oct. 23, 2019

College of Agricultural and Life Sciences

Breeding Objective

Enhance potato breeding for resistance to *Globodera*.

- 1 Development and screening of populations (Walter, Rich, Joe, Jonathan)
- 2 Exchange and screening of parent material in US, UK, and Peru (Rich and Joe)
- 3 Rapid mapping of QTLs and gene dosage studies (Jae and Joe)

G. ellingtonae cyst on potato root (I. Zasada)

G. pallida in potato roots (L.M. Dandurand)

G. rostochiensis cysts on potato roots (X. Wang)

Year 1 – populations/screening/exchange

- Study to screen breeding lines and cultivars for 3 PCN species resistance
 - Determined cv. Eden had best resistance to 3 species
- Family A10915 crossed in 2010 from Eden x Western Russet.
- Superior x Waneta population developed to test if H1 R gene conferred resistance to *G. ellingtonae* (as well as known resistance to *G. rostochiensis*)
- Screened 1200 entries to 3 PCN species for markers and mapping

Year 2 – markers/screening/exchange

- Progeny from A10915 (Eden x Western) tested with marker indicating G. pallida resistance (for GPAIV_{adg})
- Progeny from Y36 (NY121 x NY115) screened for QTLs for Ro2 and *G. pallida*
 - Marker c2_50301 on chromosome 5 worked best (used in assay SPAM 5000)
- Screening continues for 3 PCN species resistance
- Idaho and New York breeding programs acquired additional European varieties with *G. pallida* resistance

Year 3 – hybridizations/screening/markers

- Directed hybridizations done with 10 entries
- Agronomic selection from 96 families previously hybridized for PCN resistance
- Screening continues for 2 PCN species resistance (G. pallida and G. ellingtonae since resistant to ellingtonae ≈ rostochiensis)
- Marker work continues on chr 5 area for Ro2 markers and for stacking this marker with other resistance genes
- Cv. Innovator with *G. pallida* resistance being used in both NY and ID programs for hybridizations

Year 4 – hybridizations/screening/marker use

- Screening continues for PCN species resistance
- H1 marker correlation between *G. rostochiensis* and *G. ellingtonae* established (2 papers submitted)
- Idaho hybridizations using 52 PCN resistant entries
- Field selections for agronomic type continue
 - 224 Eden x Western progeny with 31 selected for good agronomic type
- Resistant parent material screened at ID with 3-4 PCN markers
- E x W population has GpalV^s_{adg} resistance gene, goal is to introgress GpaV as well to increase resistance
- New York hybridizations with
 - Innovator x Lamoka round whites
 - Innovator x NY160 reds

Year 5 – hybridizations/**screening**/markers/new germplasm

- Screening continues for PCN species resistance
- Hybridizations continue
- Progeny from Eden x Western screened using marker Contig237 (for GPAIV_{adg})
 - 234 progeny with marker evaluated using SNP chip v3 for further marker development
- Progeny from NY121 x NY115 with resistant QTLs for Ro2 and *G. pallida* used to further refine marker for Ro2 on chromosome 5
- Exchange new resistant cvs. obtained from Europe, Peru, and New Zealand w/ goal of increasing *G. pallida* resistance

Eden: Resistant

Susceptible

Marker Summary of Selected Progeny

Total selected	H1	GpaIVS _{adg}	BOTH
30	25	20	16

Both progeny had the two markers associated with resistance to PCN from Eden

PCN Screenings by Nematologists

Resistant to *G. ellingtonae* with no cysts like Eden; whereas average of 14 cysts for Western Russet

Future Directions – Years 1 and 2

- Plant Protection Act request for PCN resistance breeding start August 2020?
- Fine map Eden x Western Russet population with SNP Chip V3
 - Further define GpalV^s_{adg} locus, develop new diagnostic marker
 - Identify additional QTL for G. pallida resistance, develop marker(s)
- Identify progeny with $\mbox{GpaIV}^{\rm s}_{\rm adg}$ and \mbox{GpaV}
 - With good agronomic characteristics (and beyond year 2)
 - Evaluate with *G. pallida*
- New USDA-ARS Molecular Biologist in Aberdeen
 - Collaborate with Kuhl on PCN marker development and testing
 - Large scale screening of populations

Future Directions – Years 3 and beyond

- Incorporate additional sources of resistance (e.g. South America) into progeny with GpalV^s_{adg} and GpaV
- Continue to identify molecular markers closely linked to resistant QTL
 - Generate new mapping populations
- Bring more *G. pallida* resistant germplasm into the U.S. for hybridization
- Combine Ro2 resistance with *G. pallida* resistance in long, russet-type tubers

Future Directions: Cornell

- Breeding is a long term process (and commitment)
 - We'll continue to develop Ro1 and Ro2 resistant cultivars
- Explicitly considering *pallida* resistance is new for us
 - Will use HC marker to increase frequency of *pallida* resistance in our germplasm, increasing likelihood of developing pallida-resistant cultivars
- SPAM5000 looks like a promising marker for Ro2 (and pallida)
 - We'll keep testing it, and use if proves genuinely useful
- Breeding and genetic engineering would be so much easier if we had sequence of PCN resistance genes
 - Seek resources to clone a few, e.g. using RenSeq