Spatiotemporal Analysis and Dispersal Patterns of Globodera pallida in Idaho

Jean Bertrand Contina, Ph.D. Candidate

Major Professor: Dr. Louise-Marie Dandurand

Department of Entomology, **Plant Pathology and** Nematology

University of Idaho College of Agricultural and Life Sciences

Contina et al. 2018, Phytopathology

Objectives & Methodologies:

- Modeling the spatiotemporal distribution of *G. pallida* in infested fields
- Data collection: USDA-APHIS
- Deterministic spatial modeling
 - Akima
- Stochastic spatial modeling
 - Kriging
 - Variograms
 - Moran's I
- Invasive species distribution
 - Force of invasion
- Dispersal gradients
 - Power-law model
 - Traveling wave

Akima maps: Prevalence of G. pallida cysts

3D Akima: Prevalence of *G. pallida* cysts

Bin025 monitoring surveys for cysts

Kriging maps: Prevalence of *G. pallida* cysts

Bin025

Globodera pallida central infestation area

Globodera pallida central infestation area

ISDM: Force of invasion in Bin025

Dispersal gradient – Power-law model

Conclusions

- *Globodera pallida* infestations are **spatially-aggregated**.
- Significant reductions in the number of cysts collected during monitoring surveys.
- Significant reductions in the viability of eggs.
- Dispersal patterns follow a Power-law distribution
- Future directions: Landscape genetics and pedogenics

Acknowledgement

