Advancement in Biocontrol Research: A Cellular Level Approach to Study Trophic Interactions

Rinu Kooliyottil, Ph.D., and Louise-Marie Dandurand, Ph.D.

Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID

Outline

- > Rapid screening of biocontrol agents
- Microaspiration technology to study interactions at the cellular level
- > RNA extraction method for cell specific transcriptome
- Suppression of potential nematode parasitism genes due to biocontrol agents

Interactions

- > Nematophagous activity
- ➤ Targeting specific developmental stages of nematode life cycles

Imaging techniques

Biocontrol fungi

Microscopy Rhizosphere Chambers (Micro-ROCs)

Potato plantlets

G. pallida juveniles stained with PKH26 (1 week after fungal inoculation)

Chaetomium globosum

Potato root colonization by *C. globosum*

G. pallida in potato root

Effect of biocontrol fungi on infection by *G. pallida*

Treatments	G. pallida juveniles (J2s)/root
	system
Control	38.6 ± 9.6 a
F. oxysporum	24.0 ± 20.6 bd
M. bolleyi	23.2 ± 8.2 b
P. lilacinum	22.8 ± 12.1 b
F. solani	18.2 ± 12.8 ed
P. cucumerina	15.0 ± 7.8 ebd
F. tricinctum	13.2 ± 5.8 ced
C. globosum	7.4 ± 4.1 e

Values with the same letter are not significantly different at $P \le 0.05$

Effect of PKH26 or acid fuchsin

Treatments	Number of infective juveniles (J2s) in potato roots		
	Acid fuchsin	PKH26	
Non-inoculated control	30.6 ± 9.3 a	29.8 ± 6.8 a	
C. globosum	8.4 ± 4.8 b	7.60 ± 3.3 b	

Values with the same letter are not significantly different at $P \le 0.05$

Molecular Methods

> Systemic and local responses

Competition for nutrients and niches

Biotic/abiotic factors

Changes in gene expression at site of infection may be diluted by the relative abundance of uninfected cells.

Process of microaspiration and RNA isolation

- Allows isolation of RNA, DNA, proteins and metabolites from a heterogeneous cell population
- "Touch-free" approach: Contents from the cells of interest can be aspirated

Quality assessment of RNA isolated from microaspirated samples

Genes amplified from microaspirated cell specific cDNA

Pathogen defense against biological control

- Understanding pathogen self-defense mechanisms against biocontrol agents
- Developing approaches to improving the durability of biocontrol agents
- > Implications for the deployment of transgenes

Nematode inoculation and RNA isolation

- ➤ Single roots of *S. tuberosum* and *S. sisymbriifolium* were inoculated with sterile *G. pallida*.
- Extraction of infected nematodes from the plant roots
- > RNA isolation and transcriptome analysis

Differential expression of nematode defence genes

Clp-1

CTSS

Exn-1

Bath-38

Single root inoculation prototype

Concluding Remarks

- > Tools are required to study trophic interactions at the molecular level.
- ➤ Recent developments in microscopic and "Omics based" techniques are promising to study these interactions at the cellular level.

Acknowledgements

- USDA-NIFA
- USDA-APHIS
- Northwest Potato research Consortium
- Idaho Potato Commission

PCN Team, University of Idaho

Thank you