GLOBAL NEMATOLOGY

ADVISORY BOARD MEETING OCTOBER 25, 2019

THE TEAM

- Louise-Marie Dandurand (University of Idaho)
- Benjamin Mimee (Agriculture AgriFood Canada)
- Vivian Blok and John Jones (James Hutton Institute)
- Dee Denver (Oregon State University)
- Eric Greiner (INRA France)
- Xiaohong Wang and Inga Zasada (USDA-ARS)

RISK ASSESSMENT

- Potential for invasion and spread
- Spatial analysis and interpolation of invasion for Idaho
- Predicted yield impact
- Genetic diversity of Idaho population
- Global characterization of Globodera
- Diagnostic marker development

RISK MANAGEMENT

- New and improved genomes
- Increased knowledge of virulence factors
- Novel sources of resistance
- Phenotyping for *Globodera* resistance

INVASION AND SPREAD OF *G. PALLIDA* IN IDAHO

- The infestation in Idaho is highly aggregated and spatiallyclustered
- Contagion effect scenario (cysts from one field infested others)
- Spread by equipment contaminated by infested soil

Field

GLOBODERA PALLIDA INTRODUCTION IN IDAHO WAS A SINGULAR EVENT

Max Fst = 0.12

Max Fst = 0.30

Spatial Analysis

Genetic Analysis

- Low genetic diversity among Idaho *G. pallida* populations; uniform distribution
- Genetic diversity in populations from Scotland is higher than from Idaho

DIVERSITY AND CHARACTERIZATION OF *Globodera* Globally

- Phylogenetic links between populations
- Confirmed the routes of introduction
- Markers for new introductions from South America
- Markers for pathotypes

NEW AND IMPROVED GENOMES OF *Globoera* Spp.

	Publishe d G. pallida	New G. pallida
Size (Mb)	124.6	119.6
Scaffolds (n)	6,873	163
Scaffold N50 (bp)	121,687	2,251,599
Longest scaffold (bp)	600,076	8,303,766
GC (%)	37	37
Ns (bp)	21,024,22 9	1,245,593
BUSCO (%)	74 (CEGMA)	94
Predicted genes (n)	16,000	19,088

 ~ I,250 gene models manually annotated by Jamboree participants

Retrained annotation contains

 I6,292 coding regions (Gp = I6,403;
 Gr=I4,308)

Globodera ellingtonae

Globodera pallida

DIAGNOSTIC MARKER DEVELOPMENT For *G. Rostochiensis* pathotypes

DECISION SUPPORT SYSTEM FOR AGROTECHNOLOGY TRANSFER - DSSAT

- Globodera pallida decreased potato yield:
 - Pi = 10 eggs/g soil 15%
 - Pi = 20 eggs/g soil 28%
 - Pi = 40 eggs/g soil 44%
 - Pi = 80 eggs/g soil 87%
- DSSAT potato growth model applied to PCN impact predicts **significant potato yield reduction** in heavily infested fields

EVALUATED > 1,000 GENOTYPES FOR *Globolera* Spp. Resistance

NOVEL SOURCE OF RESISTANCE IN Soland Spegazzini

Resistant to G. pallida and G. rostochiensis

INCREASED KNOWLEDGE OF *G. PALLIDA* VIRULENCE FACTORS

G. pallida exposed to varieties with partial resistance may break 'Innovator' resistance

Genome regions showing variation identified and virulence candidates identified

TRANSCRIPTOMIC INSIGHTS INTO *Globodera* Biology

Gene expression between Gr pathotypes

Genes involved in host specificity

Analysis of survival and hatching transcriptomes

OTHER OUTCOMES

- 4 post-doctoral scholars included in research efforts
- 5 graduate students trained
- ~ 20 publications
- 4 GLOBAL Nematology symposia at national/international meetings
- > 40 presentation given to stakeholders and scientific communities

FUTURE??

- How do we keep this productive collaboration alive?
- Continued need to share resources and methodologies to more rapidly advance science
- Continued cross laboratory training of students